

International Journal of Pharmaceutics 106 (1994) 167–171

Reversed-phase high-performance liquid chromatography for simultaneous determination of prostaglandins E_2 , A_2 and B_2

Kang Choon Lee^{a,*}, Hyun Myo Song^b, In Joon Oh^b, Patrick P. DeLuca^c

^a College of Pharmacy, SungKyunKwan University, 300 Chonchon-dong, Jangan-ku, Suwon 440-746, South Korea, ^b College of Pharmacy, Chonnam National University, Kwangju 550-757, South Korea, ^c College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA

(Received 28 August 1993; Modified version received 29 November 1993; Accepted 3 December 1993)

Abstract

A simultaneous determination of prostaglandin E_2 , A_2 and B_2 for stability studies of PGE_2 in solution has been developed by reversed-phase high-performance liquid chromatography using a 3 μ m C₁₈ column. The mobile phase consisted of 35% acetonitrile in 0.002 M phosphate buffer (pH 3.5) at a flow rate of 1.5 ml/min. Quantitative measurement was performed at 192 nm. The method has been applied to primary kinetic studies on the main degradation reaction profile for $PGE_2 \rightarrow PGA_2 \rightarrow PGB_2$ at 60°C in pH 2.0, 7.2, and 10.0 buffer solutions and confirmed the mole percent kinetics of PGE_2 , PGA_2 and PGB_2 for over 150 h.

Key words: Prostaglandin E2; Prostaglandin A2; Prostaglandin B2; Stability kinetics; HPLC

Prostaglandin E_2 (PGE₂) is known as a potential therapeutic agent in the treatment of many arteriosclerotic disease (Curtis-Prior, 1988), but is very unstable in aqueous solution (Hageman, 1986).

 PGE_2 readily undergoes dehydration in acidic and alkaline aqueous solution to yield the unsaturated prostaglandin A_2 (PGA₂) which further isomerizes to prostaglandin B_2 (PGB₂) under alkaline conditions (Monkhouse et al., 1973; Stehle, 1982). However, the simultaneous separation of these three prostaglandins has not been fully achieved by HPLC, since PGE₂ is significantly more polar than PGA_2 and PGB_2 and because prostaglandins A_2 and B_2 are very similar structurally and have similar polarities (Inayama et al., 1980).

Current assays for the determination of prostaglandins A_2 and B_2 are highly dependent upon the individual assay of PGA₂ and PGB₂ before and after alkaline treatment to covert PGA₂ to PGB₂ using the molar absorptivity of the respective λ_{max} by UV-visible spectrophotometry (Monkhouse et al., 1973; Hirayama et al., 1986). High-performance liquid chromatographic (HPLC) studies including ion-exchange utilizing cyclodextrin complexation (Uekama et al., 1977) using different detection wavelengths and derivatizing HPLC for fluorescence detection (Salari et

^{*} Corresponding author.

al., 1987) and UV detection (Fitzpatrick et al., 1977) have been applied for the simultaneous determination of PGA_2 and PGB_2 . Recently, a simple isocratic separation method for PGE_1 , PGA_1 and PGB_1 using reversed-phase HPLC was reported (Lee and DeLuca, 1991).

The instability of PGE_2 and difficulties in the simultaneous determination of degradation products have severely hampered kinetic studies on their stability and the development of new formulations (Eriksson et al., 1988; Siegenthaler, 1989; Watkinson et al., 1991) and have therefore proved to present a challenge to investigators for understanding such persistent stability problems and analysis.

The purpose of the present work was to develop a simple and simultaneous separation method for PGE₂, PGA₂ and PGB₂ for primary stability kinetic studies of PGE₂ in solution.

All prostaglandins (PGE₂, PGA₂, PGB₂, PGE₁, PGA₁ and PGB₁) were purchased from Sigma (St. Louis, U.S.A.). Acetonitrile and methanol were HPLC grade from Fisher (Pittsburgh, U.S.A.) and all other materials were of reagent grade.

An HPLC system consisting of a model 501 pump, U6K injector, 484 turnable UV detector (Waters, U.S.A.) and CR 601 integrator (Shimadzu, Japan) was operated at ambient temperature. An LC-18 column (3 μ m, 4.6 mm \times 15 cm; Supelco, U.S.A.) was used with a mobile phase of 35% acetonitrile in 0.002 M phosphate buffer (pH 3.5). The flow rate and injection volume were 1.5 ml/min and 5 μ l, respectively. Stock solutions of each prostaglandin (PGE₂, PGA_2 , PGB_2 , PGE_1 , PGA_1 and PGB_1) were prepared at a concentration of 5 mg/ml in methanol and stored in nitrogen gas-filled vials at 4°C. The mixed working solution of six prostaglandins was prepared by mixing equal volumes of the respective stock solution and diluted in methanol to make 20 μ g/ml of each prostaglandins. Chromatograms were recorded at a fixed wavelength of 192 nm and quantitations of PGE₂, PGA_2 and PGB_2 were calculated from the chromatograms by measurement of the corresponding peak area.

Studies on stability kinetics were performed

with a PGE₂ solution of 50 μ g/ml at different pH values prepared by placing 0.1 ml of 0.5 mg/ml PGE₂ methanol solution and 0.9 ml of the respective buffer solution into screw-capped vials. Buffers used were 0.05 M HCl/KCl (pH 2.0), 0.002 M NaH₂PO₄/NaOH (pH 7.2) and 0.002 M NaHCO₃/NaOH (pH 10.0). At specific time intervals in a 60°C water bath, each vial was removed, cooled to room temperature, 5 μ l were injected into HPLC without any modification and then the vial was returned to the water bath.

A cosiderable body of data on the stability kinetics of PGE_2 have been monitored spectrophotometrically by measuring the PGE_2 concentration only and/or the decreased and increased absorbance of PGA_2 and of PGB_2 using their molar absorptivity at the respective maximum wavelengths before and after alkali treatment (Monkhouse et al., 1973; Cho et al., 1977; Stehle, 1982) and recently HPLC has been adopted (Hirayama et al., 1986). Nevertheless, both methods involve problems as mentioned above.

A simultaneous separation of the six prostaglandins, i.e., PGE_1 , PGE_2 , PGA_1 , PGA_2 , PGB_1 and PGB_2 , was achieved using a 3 μ m C₁₈ column under the conditions described above and the HPLC chromatogram measured at a fixed wavelength of 192 nm is shown in Fig. 1. The chromatographic system developed here is based on the system described by Lee and DeLuca (1991) for PGE₁, PGA₁ and PGB₁. The standard calibration curves were constructed using the mixed standard solution of PGE₂, PGA₂, PGB₂. The correlation of peak area ratio with the concentration of PGE₂, PGA₂ and PGB₂ was linear in the range 1–60 μ g/ml. The correlation coefficients were better than 0.999.

With the method developed, the changes in mole percent of PGE_2 , PGA_2 and PGB_2 with time were plotted for the main degradation reaction profiles of PGE_2 at 60°C in different pH 2.0, 7.2 and 10.0 buffers, respectively, as shown in Fig. 2. Fig. 3 shows the changes in total mole percent of PGE_2 , PGA_2 and PGB_2 with time in the same buffers.

At pH 2.0, the main degradation product was only PGA_2 , the conversion ratio from PGE_2 to

Fig. 1. HPLC chromatograms of prostaglandins measured at 192 nm. Concentrations: 100 ng each of PGE₁, PGE₂, PGA₁, PGA₂, PGA₁ and PGB₂ in 5 μ l; attenuation, 3.

 PGA_2 was negligible in comparison with those under alkaline conditions and the total mole percent of PGE_2 and PGA_2 markedly decreased. Under alkaline conditions, the reaction rates of dehydration and isomerization became more rapid with increasing pH values, as described previously (Monkhouse et al., 1973; Hirayama et al., 1986). In contrast, the total mole percent of

Fig. 3. Total mole percent of PGE₂, PGA₂ and PGB₂ as a function of time under different pH conditions and at 60°C. Initial concentration of PGE₂, 50 μ g/ml.

 PGE_2 , PGA_2 and PGB_2 under alkaline conditions was not maintained at approx. 100% of the initial PGE_2 during the experimental period as reported in previous papers (Monkhouse et al., 1973; Uekama et al., 1977; Stehle, 1982), but decreased to fall within the range of about 50– 60% of the initial PGE_2 as shown in Fig. 3. Therefore, it is assumed that the major final degradation product of PGE_2 under alkaline conditions is PGB_2 with a conversion ratio of about 50% of the initial PGE_2 , the remaining 50% of

Fig. 2. Dehydration and rearrangement reaction profile of PGE_2 as a function of time under different pH conditions and at 60°C. Initial concentration of PGE_2 , 50 $\mu g/ml$.

the PGE_2 being considered to degrade to yield unidentified products or analogs of prostaglandins except for PGA₂ and PGB₂.

Fig. 4 shows typical HPLC chromatograms of PGE_2 solution measured at 192 nm after 4 days at 60°C in acidic and alkaline buffer solutions. Besides the peaks of PGA_2 and PGB_2 , the chromatograms show several typical peaks of unknown degradation products which remain to be determined.

The formation of epimers at C-8 and C-15 of PGE_2 , PGA_2 and PGB_2 , a highly conjugated 13,15-dehydration product of PGA_2 in acidic so-

lution and 13-hydroxy diastereomers of PGA₂, in addition to the main degradation pathway of $PGE_2 \rightarrow PGA_2 \rightarrow PGB_2$, has been considered based on limited evidence (Monkhouse et al., 1973; Stehle, 1982). A better understanding of the HPLC chromatograms of Fig. 4 followed by identification of the unknown peaks appears to be essential for further studies of the complex degradation kinetics of PGE₂ in solution.

In conclusion, PGE_2 and its major degradation products, PGA_2 and PGB_2 including PGE_1 , PGA_1 and PGB_1 were determined simultaneously without any modification and derivatization pro-

Fig. 4. Typical HPLC chromatograms measured after 6 days at 60°C in acidic and alkaline buffers measured at 192 nm. Initial concentration of PGE₂, 50 μ g/ml; attenuation, 3.

cedures. With this method, primary kinetic studies of PGE_2 were performed at 60°C in solutions of different pH and it was confirmed that various degradation products resulted except for PGA_2 and PGB_2 , which remain to be determined. Furthermore, it was demonstrated that the total mole percent of PGE_2 , PGA_2 and PGB_2 at alkaline pH during the experimental time was not 100% as reported previously but approached the range of 50–60% of the initial PGE_2 .

1. References

- Cho, M.J., Krueger, W.C. and Oesterling, T.O., Nucleophilic addition of bisulfite ion to prostaglandins E_2 and A_2 : Implication in aqueous stability, *J. Pharm. Sci.*, 66 (1977) 149–154.
- Curtis-Prior, P.B., Prostaglandins: Biology and Chemistry of Prostaglandins and Related Eicosanoids, Churchill Livingstone, New York, 1988, pp. 205-662.
- Eriksson, G., Torngren, M., Aly, A. and Johansson, C., Topical prostaglandin E in the treatment of chronic leg ulcers. *Br. J. Dermatol.*, 118 (1988) 531–536.
- Fitzpatrick, F.A., Wynalda, M.A. and Kaiser, D.G., Oximes for high performance liquid and electron capture gas chromatography of prostaglandins and hromboxanes. *Anal. Chem.*, 49 (1977) 1032–1035.
- Hageman, M.J., Prostaglandin E₂. In Connors, K.A., Amindon, G.L. and Stella, V.J. (Eds), *Chemical Stability of Pharmaceuticals*, Wiley, New York, 1986, pp. 719–727.

- Hirayama, F., Kurihara, M. and Uekama, K., Mechanism of decelaration by methylated cyclodextrins in the dehydration of prostaglandin E₂ and the isomerization of prostaglandin A₂ in aqueous solution. *Chem. Pharm. Bull.*, 34 (1986) 5093-5101.
- Inayama, S., Hori, H. and Shibata, T., Simple and rapid separation of certain prostaglandins by reversed-phase high-performance liquid chromatography. J. Chromatogr., 194 (1980) 85-88.
- Lee, K.C. and DeLuca, P.P., Simultaneous determination of prostaglandins E_1 , A_1 and B_1 by reversed-phase high performance liquid chromatography for the kinetic studies of PGE₁ in solution. J. Chromatogr., 555 (1991) 73-80.
- Monkhouse, D.C., Van Campen, L. and Aguiar A.J., Kinetics of dehydration and isomerization of prostaglandins E₁ and E₂. J. Pharm. Sci., 62 (1973) 576–580.
- Salari, H. Yeung, M., Douglas, S. and Morozowich, W., Detection of prostaglandins by high-performance liquid chromatography after conversion to p-(9-anthroyloxy) phenacyl esters. Anal. Biochem., 165 (1987) 220-229.
- Siegenthaler, C., HPLC-methode zur Bestimmung von Prostaglandin E₂ in Tylose Gel. *Pharm. Acta Helv.*, 64 (1989) 345-347.
- Stehle, R.G., Physical chemistry, stability and handling of prostaglandins E₂, F_{2a}, D₂ and I₂: A critical summary. *Methods Enzymol.*, 86 (1982) 436–458.
- Uekama, K., Hirayama, F., Ikeda, K. and Naba, K., Utilization of cyclodextrin complexation for separation of E, A and B prostaglandins by ion-exchange liquid chromatography. J. Pharm. Sci., 66 (1977) 706-710.
- Watkinson, A.C., Hadgraft, J. and Bye, A., Aspects of the transdermal delivery of prostaglandins. *Int. J. Pharm.*, 74 (1991) 229–236.